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CALCULATION OF THE MOVEMENT OF A TWISTED FLOW OF A GAS SUSPENSION 

ABOUT THE END OF A SEMI-INFINITE CYLINDER 

I. Kh. Enikeev UDC 532.529 

This article examines the transverse movement of a twisted flow of a gas suspension 
about the end of a semi-infinite cylinder. The flow of the suspension is studied near the 
contact surface. The study is conducted within the framework of a three-velocity, three- 
temperature scheme describing the motion of interpenetrating continua. Questions relating 
to the formulation of the boundary conditions are also discussed. We determine the range of 
variation of the governing parameters within which reverse-circulating flow of the gas and 
particles takes place. 

In most of the theoretical studies devoted either to the external flow of a gas sus- 
pension about a body or to the investigation of internal flows of disperse media, it is 
assumed particles which come into contact with a solid surface disappear from the flow [1-5]. 
Such a formulation of the problem is most appropriate for the case when the disperse phase 
consists of liquid drops or particles which form a thin film along the surface of the body 
after they come into contact with it. 

If the disperse phase forms solid particles, the formulation of the boundary conditions 
becomes more complicated: it is necessary to introduce additional phases - a phase of par- 
ticles reflected from the solid surface [6, 7] and a phase of particles moving randomly near 
the body in the flowing gas suspension [8]. 

I. Formulation of the Problem. We will examine the movement of a twisted flow of a 
gas suspension around a semi-infinite cylindrical end located within a contact surface which 
is coaxial with it (Fig. I). 

In accordance with [7], we introduce a fraction (phase) of incident particles (particles 
flying to the surface of the body in the flow) and a fraction of reflected particles (par- 
ticles flying away from the surface, in the direction opposite the incident particles). As 
has already been noted, in the case of flow past blunt bodies, allowance for collisions be- 
tween particles of different fractions makes it necessary to introduce an additional particle 
phase which moves randomly near the surface of the body in the gas suspension. Here, it is 
necessary to consider the velocity, pressure, and energy associated with the random motion 
resulting from collisions of particles of different fractions. Now the formulation of the 
problem is complicated to the extent that its cannot even be modeled numerically on a com- 
puter. Investigators have therefore found the range of determining parameters within which 
effects connected with randomization of the particles can be ignored. Thus, the estimates 
reported in [9] showed that randomization of the particles can be ignored when the mass con- 
tent of particles in the incoming flow is on the order of 0.5-1. Within the framework of the 
proposed model, the equations describing the given problem have the form [7] 

O P i  . 
09~0~ -r" div plvl = O. -5F + d iv  piv~ = J~j (i =/= ]; i, ] = 2, 3), 

ot 
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i 2  E i = e i  + y v i ,  

where the subs crYpt i ~ j (i, j = 2, 3) pertains to parameters of the incident and reflected 
particles, respectively; k is the summation index pertaining to the axes of the Cartesian 
coordinate system; Pi, v~ , el, and E i are the corrected density, velocity vector, and internal 
and total energies of the i-th phase; p is the pressure in the gas; fj~, qu are the friction 
vector and the rate of heat transfer between the gas and the particles; fij, and Ji,j are the 
vector of the effective interaction force and the rate of mass transfer between the second 

�9 and third phases as a result of particle collision. 

The equations of state of the phases are as follows: 

p = p~(y -- t)el, el = cv1Ti, e2 = e2T2, e 3 : c 3 T  3. 

Here, u is  the  a d i a b a t i c  exponent  of the  gas;  p~ = p~ = cons t ;  cv1, c 2 = c s a r e  t he  i s o c h o r i c  
hea t  c a p a c i t y  of t he  gas a t  c o n s t a n t  volume and the  hea t  c a p a c i t y  of the  p a r t i c l e s ,  r e s p e c -  

0 
tYvely; T i is the temperature of the phase; Pi is the true density of the phase. 

As in [7], the expressions for the rates of mechanical and thermal interaction between 
the phases will be represented as follows, with allowance for mass transfer between the in- 
cident and reflected particles as a result of collision 

J32 : ~(J) ~2~3 I V2 - -  Y3 I " f32 : k(])P2P3 (v2 - -  V3) I V2 - -  "3 l 

(d i s  p a r t i c l e  d i a m e t e r ) .  The c o e f f i c i e n t s  d e f i n i n g  t h e  i n t e r a c t i o n s  due to  c o l l i s i o n s  o f  
incident and reflected particles are taken equal to: 

k (J)= k (s)= 0,i. 

This value for k (f) agrees with the experimental data in [i0] in relation to the hydraulics 
of polydisperse flows (air and particles of quartz sand) with relative phase velocities 

5v = I0 m/set. 

2. Numerical Integration. The problem formulated in Part 1 was solved numerically by 
a modification of the coarse-particle method [ii]. The essence of the modification - pro- 
posed in [ii] - is the use of a difference scheme that is implicit with respect to time in 
the Eulerian stage of the process. Such an approach makes it possible to use the coarse- 
particle method to calculate flows with relatively small Math numbers M 0 (M 0 F 0.i) when 

0,t,  A ~ = A J  A x = - ~ ,  t o 
Ax t 0' U o' 

where R is a characteristic linear dimension of the problem (such as the radius of the end 
at x = 0); U 0 is the characteristic velocity (the velocity of the gas in the undisturbed 
flow). 
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As in the case of a two-phase model of motion in the Eulerian stage, intermediate values 
are calculated for only the gas phase. The parameters of the second and third phases remain 
constant at this stage, since the low volume concentration of the disperse phase means that 
there is no pressure gradient in the equations for the solid phase. The transfer of the 
mass, momentum, and energy of each phase across the boundary of the cells is calculated at 
the Lagrangian stage. In the final stage, conservation laws are used to find values for the 
parameters of all phases on the new time layer. Here, allowance is made for mechanical in- 
teraction between the phases f~ (i ~ j; i, j = i, 2, 3), the rate of mass transfer between 
the second and third phases J32, and the flows of heat q12, qla from the gas to the incident 
and reflected particles, respectively. As in the case of a two-phase medium, the parameters 
of the solid phase are calculated first in the algorithm. The theoretical region had the 
form of a rectangle divided into 42 cells lengthwise and 22 cells in the height direction. 
The dimensionless distance step in the integration was Ax = 0.082, and the dimensionless 
time step in the integration was A~/Ax = 0.I. 

The boundary conditions for the gas and particles were as follows: 

i. We used the conditions of an undisturbed flow without slip on the left boundary 
x = -2 (see Fig. I) of the cylindrical region, on the side of the incoming two-phase flow: 

X 
vl  v2 U o, v~ ~ ~ = = = v 2 = 0 ,  P2 P2o, P = P o ,  T I = T ~ = T  O . 

We also assumed that the gas and the particles were twisted in accordance with the rigid-body 
law, i.e. , 

vT 
(k~ is a coefficient expressing the twist of the disperse flow in the section x = -2). 

2. On the lower boundary (y = 0) - considered to be the axis of symmetry of the end in 
the flow and located parallel to the velocity of the incoming flow U 0 - we took symmetry 
conditions for both the gas and the disperse particles. 

3. We adopted the condition of impermeability on the upper [y = (3/2)R] contact surface 
for the gas and the condition of the absence of reflection for the particles. In other words, 
all of the particles that come into contact with this surface disappeared from the flow. 

4. On the right (x = i) open boundary of the region, we extrapolated the flow beyond 
the computed region; the derivatives of the velocities of the phases and pressures with re- 
spect to the normal were nearly equal to zero on this boundary. 

n 
5. We adopted the condition of impermeability v I = 0 for the gas on the surface of 

the body, while for the disperse phase a boundary condition was needed only on the front 
surface (facing the incoming flow). Particles were absent from the rest of the body's sur- 
face. The following reflection condition was adopted for the particles on the front surface 

= - = v .n; i =  2 , 3 ) ,  - -  : - -  

where k ~ ,  k r ~ I are the coefficient of restitution of normal velocity in impact and the 
coefficient of dynamic friction. The values of these coefficients depend on the properties 
and state of the colliding surfaces. We assumed that k (n) = k (~) = 0.7. Calculations were 

R performed for different values of k~, m20 = P20/P~0, Stk = P~U0d2/18~R. 

3. Description of the Results. Figure i shows the streamlines of the phases with the 

Stokes number Stk = 0.I, k (J) = k (f) = 0.i, k (n) = 0.7, k~ = 0.i, M 0 = 0.08, m20 = i. The 
following notation is used here and in Fig. 2: the solid lines represent the streamlines of 
the gas phase, the points represent the streamlines of the incident particles, the circles 
denote the streamlines of the reflected particles, and curve i shows the envelope of the 
streamlines of the reflected particles (the separatrix). The calculations showed that the 
flow pattern is as follows. A region of high particle concentration, bounded by the separa- 
trix, is formed ahead of the body. Reflected particles do not penetrate the incoming flow 
behind this region, which is thus the envelope of the reflected-particle streamlines. The 
normal velocity of the reflected particles is zero on the separatrix, and stagnation of the 
gas and incident particles causes reflected particles to build up and increase in concentra- 
tion repeatedly. This buildup is limited by lateral removal of particles by the gas flowing 
over the cylindrical end and a 3 + 2 phase transition occurring as a result of collisions be- 
tween incident and reflected particles. Reflected particles are thus able to enter the in- 
coming flow. As can be seen in Fig. 3, the mass content of the disperse phase on the sepa- 
ratrix is approximately i0 times greater than the particle concentration in the incoming flow. 
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= I0 However, the volume concentration a s P~ P2 = 0.004 (p~ = 2500 kg/m~), which allows us to 
ignore the volume contents of the phases in Eqs. (i.i) throughout the flow region. 

Figure 2 shows the streamlines of the phases for the same values of the determining 
R parameters as in Fig. i but with kw~ = 0 25. The variants with increasing values of kR 

shown in Figs. i and 2 illustrate that there are basically two different flow regimes. At R k~| 0 15, nonseparated flow takes place about the semi-infinite cylider. At ~R ~ 0.25 �9 ~ 11" , 

a region of reverse-circulating motion of the gas is formed ahead of the end of the cylinder. 
Meanwhile, as can be seen from Figs. i and 2, the profile of the separatrix undergoes sig- 
nificant distortion. The separatrix has the form of a parabola whose branches are directed 
toward body. The vertex is located a distance on the order of R from the symmetry axis. It 
is seen that no substantial change in the profile of the separatrix takes place with a change 
in Stk or m20 It is interesting to note that an increase in k R is accompanied by a sig- 
nificant (by a factor of two or more) increase in the distance between the separatrix and the 
end of the cylinder�9 This is connected with the fact that at large k R the reverse-circulating 
gas flow sharply reduces the dynamic head exerted on the reflected particles by the carrier 
phase. At the same time, there is also a decrease in the stagnating effect exerted on the 
reflected particles by the incident particles due to the decrease in their concentration in 
the wall region. 

As was shown in [12], in the flow of an incompressible fluid past a blunt body in a 
cylindrical tube, the distributions of the axial u and tangential w components of velocity 
can be approximately obtained from the relations 

u ( R 2 ) k a J o ( k Y ) .  
~ o  = i + o,5 7 -  - ~ " J,  (ka), ( 3 . 1 )  

( m B2 \ aJ (ky) k~=U~ k = -- (3.2) ~--.~=t+ 7 - - t  (k~)' ~ -  n ' n ' 

where J0(ky) and J1(ky) are Bessel functions of the first kind; a is the height of the body 
in the flow. Downstream on the tube axis 

 Lo=(- Lo 
I t  f o l l o w s  f rom ( 3 . 1 ) - ( 3 . 2 )  t h a t  m a i n l y  n e g a t i v e  v a l u e s  o f  u a r e  s e e n  on t h e  t u b e  a x i s  a t  
a k )  2 . 4 .  A q u a l i t a t i v e  e x p l a n a t i o n  of  t h i s  i s  t h a t  e x p a n s i o n  o f  t h e  f l o w  i s  a c c o m p a n i e d  by 
a r e d i s t r i b u t i o n  o f  p r e s s u r e  i n  t h e  l i q u i d ,  w h i c h  in  t u r n  l e a d s  t o  f o r m a t i o n  o f  t h e  r e v e r s e  
a x i a l  f l o w .  T h i s  i s  i l l u s t r a t e d  i n  F i g .  3,  where  t h e  s o l i d  l i n e s  and t h e  p o i n t s  r e p r e s e n t  
t h e  v e l o c i t y  p r o f i l e s  o f  t h e  gas  and i n c i d e n t  p a r t i c l e s  and t h e  d a s h e d  l i n e s  show t h e  d i s -  
t r i b u t i o n  o f  t h e  o v e r a l l  d e n s i t y  o f  t h e  d i s p e r s e  p h a s e .  Cu rves  1 and 2 c o r r e s p o n d  t o  k R = W ~  

0 . 1 ,  0 . 2 5 .  The c a l c u l a t i o n s  were  p e r f o r m e d  w i t h  t h e  same v a l u e s  o f  t h e  d e t e r m i n i n g  p a r a m e t e r s  
a s  i n  F i g s .  1 and 2. F i g u r e  3 shows t h a t  an i n c r e a s e  i n  k ~  i n  t h e  a x i a l  r e g i o n  i s  accom- 
p a n i e d  by a s u b s t a n t i a l  r e d u c t i o n  i n  gas  v e l o c i t y  due t o  t h e  p r e s e n c e  o f  t h e  r e v e r s e - c i r c u -  
l a t i n g  motion. This in turn leads to a decrease in the velocity of the incident particles. 
Collisions of incident and reflected particles result in an even greater decrease in the 
velocity of the incident particles behind the separatrix. It is evident from Fig. 3 that 
the concentration profile of the disperse phase is of a distinctly nonmonotonic nature, which 
is connected with the existence of a centrifugal force that moves particles out of the axial 

322 



region and thus lowers their concentration in the latter. As was shown in [7], there is an 
abrupt increase in the concentration of reflected particles on the separatrix, which leads 
to the formation of a narrow zone in which the concentration of the disperse phase undergoes 
a significant increase. The concentration of this phase decreases as the end of the cylinder 
is approached but remains appreciably greater than in the incoming flow (see Fig. 3). 
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INTERACTION OF A SHOCK WAVE WITH A BOUNDARY LAYER 

V. I. Bergel'son, Yu. N. Kiselev, 
V. A. Klumov,* I. V. Nemchinov, 
T. I. Orlova, V. B. Rozhdestvenskii, 
and V. M. Khazins 

UDC 533.6.011 

The propagation of a high-intensity shock wave in a gas along a solid surface is accom- 
panied by distortion of the shock front - a wedge-shaped precursor which becomes larger over 
time is formed near the surface [!]. One possible reason for this phenomenon is the formation 
of a heated layer of gas or erosive vapor near the surface [2]. Analogous to this phenomenon 
is the thermal-layer effect discovered by G. I. Taganov [3, 4]. The restructuring that the 
flow undergoes when a thermal (low-density) layer precedes the shock front is of a global 
nature, since it occurs in a region much larger than the thickness of the perturbing layer. 
It was subsequently noted [5] that a precursor is formed when the surface of the wall vapor- 
izes. Detailed spectral measurements made in [6, 7] showed that the given phenomenon does 
indeed begin to unfold in a thin vaporous boundary layer heated by radiation. At the same 
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